Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Paediatr Anaesth ; 34(5): 467-476, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38358320

RESUMO

BACKGROUND: Genetic mitochondrial diseases impact over 1 in 4000 individuals, most often presenting in infancy or early childhood. Seizures are major clinical sequelae in some mitochondrial diseases including Leigh syndrome, the most common pediatric presentation of mitochondrial disease. Dietary ketosis has been used to manage seizures in mitochondrial disease patients. Mitochondrial disease patients often require surgical interventions, leading to anesthetic exposures. Anesthetics have been shown to be toxic in the setting of mitochondrial disease, but the impact of a ketogenic diet on anesthetic toxicities in this setting has not been studied. AIMS: Our aim in this study was to determine whether dietary ketosis impacts volatile anesthetic toxicities in the setting of genetic mitochondrial disease. METHODS: The impact of dietary ketosis on toxicities of volatile anesthetic exposure in mitochondrial disease was studied by exposing young Ndufs4(-/-) mice fed ketogenic or control diet to isoflurane anesthesia. Blood metabolites were measured before and at the end of exposures, and survival and weight were monitored. RESULTS: Compared to a regular diet, the ketogenic diet exacerbated hyperlactatemia resulting from isoflurane exposure (control vs. ketogenic diet in anesthesia mean difference 1.96 mM, Tukey's multiple comparison adjusted p = .0271) and was associated with a significant increase in mortality during and immediately after exposures (27% vs. 87.5% mortality in the control and ketogenic diet groups, respectively, during the exposure period, Fisher's exact test p = .0121). Our data indicate that dietary ketosis and volatile anesthesia interact negatively in the setting of mitochondrial disease. CONCLUSIONS: Our findings suggest that extra caution should be taken in the anesthetic management of mitochondrial disease patients in dietary ketosis.


Assuntos
Anestesia , Anestésicos , Isoflurano , Cetose , Doença de Leigh , Doenças Mitocondriais , Humanos , Criança , Pré-Escolar , Camundongos , Animais , Doença de Leigh/genética , Dieta , Cetose/metabolismo , Convulsões , Complexo I de Transporte de Elétrons/metabolismo
2.
bioRxiv ; 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38405739

RESUMO

Pairwise compatibility between virus and host proteins can dictate the outcome of infection. During transmission, both inter- and intraspecies variabilities in receptor protein sequences can impact cell susceptibility. Many viruses possess mutable viral entry proteins and the patterns of host compatibility can shift as the viral protein sequence changes. This combinatorial sequence space between virus and host is poorly understood, as traditional experimental approaches lack the throughput to simultaneously test all possible combinations of protein sequences. Here, we created a pseudotyped virus infection assay where a multiplexed target-cell library of host receptor variants can be assayed simultaneously using a DNA barcode sequencing readout. We applied this assay to test a panel of 30 ACE2 orthologs or human sequence mutants for infectability by the original SARS-CoV-2 spike protein or the Alpha, Beta, Gamma, Delta, and Omicron BA1 variant spikes. We compared these results to an analysis of the structural shifts that occurred for each variant spike's interface with human ACE2. Mutated residues were directly involved in the largest shifts, although there were also widespread indirect effects altering interface structure. The N501Y substitution in spike conferred a large structural shift for interaction with ACE2, which was partially recreated by indirect distal substitutions in Delta, which does not harbor N501Y. The structural shifts from N501Y greatly influenced the set of animal orthologs the variant spike was capable of interacting with. Out of the thirteen non-human orthologs, ten exhibited unique patterns of variant-specific compatibility, demonstrating that spike sequence changes during human transmission can toggle ACE2 compatibility and potential susceptibility of other animal species, and cumulatively increase overall compatibilities as new variants emerge. These experiments provide a blueprint for similar large-scale assessments of protein compatibility during entry by diverse viruses. This dataset demonstrates the complex compatibility relationships that occur between variable interacting host and virus proteins.

3.
Br J Anaesth ; 131(5): 832-846, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37770252

RESUMO

BACKGROUND: Volatile anaesthetics are widely used in human medicine. Although generally safe, hypersensitivity and toxicity can occur in rare cases, such as in certain genetic disorders. Anaesthesia hypersensitivity is well-documented in a subset of mitochondrial diseases, but whether volatile anaesthetics are toxic in this setting has not been explored. METHODS: We exposed Ndufs4(-/-) mice, a model of Leigh syndrome, to isoflurane (0.2-0.6%), oxygen 100%, or air. Cardiorespiratory function, weight, blood metabolites, and survival were assessed. We exposed post-symptom onset and pre-symptom onset animals and animals treated with the macrophage depleting drug PLX3397/pexidartinib to define the role of overt neuroinflammation in volatile anaesthetic toxicities. RESULTS: Isoflurane induced hyperlactataemia, weight loss, and mortality in a concentration- and duration-dependent manner from 0.2% to 0.6% compared with carrier gas (O2 100%) or mock (air) exposures (lifespan after 30-min exposures ∗P<0.05 for isoflurane 0.4% vs air or vs O2, ∗∗P<0.005 for isoflurane 0.6% vs air or O2; 60-min exposures ∗∗P<0.005 for isoflurane 0.2% vs air, ∗P<0.05 for isoflurane 0.2% vs O2). Isoflurane toxicity was significantly reduced in Ndufs4(-/-) exposed before CNS disease onset, and the macrophage depleting drug pexidartinib attenuated sequelae of isoflurane toxicity (survival ∗∗∗P=0.0008 isoflurane 0.4% vs pexidartinib plus isoflurane 0.4%). Finally, the laboratory animal standard of care of 100% O2 as a carrier gas contributed significantly to weight loss and reduced survival, but not to metabolic changes, and increased acute mortality. CONCLUSIONS: Isoflurane is toxic in the Ndufs4(-/-) model of Leigh syndrome. Toxic effects are dependent on the status of underlying neurologic disease, largely prevented by the CSF1R inhibitor pexidartinib, and influenced by oxygen concentration in the carrier gas.


Assuntos
Anestésicos Inalatórios , Isoflurano , Doença de Leigh , Humanos , Animais , Camundongos , Isoflurano/toxicidade , Anestésicos Inalatórios/toxicidade , Doença de Leigh/genética , Oxigênio , Redução de Peso , Complexo I de Transporte de Elétrons
4.
J Acoust Soc Am ; 154(2): 1211-1225, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37610718

RESUMO

In transcranial focused ultrasound therapies, such as treating essential tremor via thermal ablation in the thalamus, acoustic energy is focused through the skull using a phased-array transducer. Ray tracing is a computationally efficient method that can correct skull-induced phase aberrations via per-element phase delay calculations using patient-specific computed tomography (CT) data. However, recent studies show that variations in CT-derived Hounsfield unit may account for only 50% of the speed of sound variability in human skull specimens, potentially limiting clinical transcranial ultrasound applications. Therefore, understanding the sensitivity of treatment planning methods to material parameter variations is essential. The present work uses a ray-tracing simulation model to explore how imprecision in model inputs, arising from clinically significant uncertainties in skull properties or considerations of acoustic phenomena, affects acoustic focusing quality through the skull. We propose and validate new methods to optimize ray-tracing skull simulations for clinical treatment planning, relevant for predicting intracranial target's thermal rise, using experimental data from ex-vivo human skulls.


Assuntos
Cabeça , Crânio , Humanos , Crânio/diagnóstico por imagem , Ultrassonografia , Acústica , Simulação por Computador
5.
Sci Rep ; 12(1): 13407, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35927449

RESUMO

Transcranial focused ultrasound with the InSightec Exablate system uses thermal ablation for the treatment of movement and mood disorders and blood brain barrier disruption for tumor therapy. The system uses computed tomography (CT) images to calculate phase corrections that account for aberrations caused by the human skull. This work investigates whether magnetic resonance (MR) images can be used as an alternative to CT images to calculate phase corrections. Phase corrections were calculated using the gold standard hydrophone method and the standard of care InSightec ray tracing method. MR binary image mask, MR-simulated-CT (MRsimCT), and CT images of three ex vivo human skulls were supplied as inputs to the InSightec ray tracing method. The degassed ex vivo human skulls were sonicated with a 670 kHz hemispherical phased array transducer (InSightec Exablate 4000). 3D raster scans of the beam profiles were acquired using a hydrophone mounted on a 3-axis positioner system. Focal spots were evaluated using six metrics: pressure at the target, peak pressure, intensity at the target, peak intensity, positioning error, and focal spot volume. Targets at the geometric focus and 5 mm lateral to the geometric focus were investigated. There was no statistical difference between any of the metrics at either target using either MRsimCT or CT for phase aberration correction. As opposed to the MRsimCT, the use of CT images for aberration correction requires registration to the treatment day MR images; CT misregistration within a range of ± 2 degrees of rotation error along three dimensions was shown to reduce focal spot intensity by up to 9.4%. MRsimCT images used for phase aberration correction for the skull produce similar results as CT-based correction, while avoiding both CT to MR registration errors and unnecessary patient exposure to ionizing radiation.


Assuntos
Crânio , Tomografia Computadorizada por Raios X , Cabeça , Humanos , Imageamento por Ressonância Magnética/métodos , Crânio/diagnóstico por imagem , Crânio/patologia , Tomografia Computadorizada por Raios X/métodos
6.
Phys Med Biol ; 67(12)2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35609619

RESUMO

Objective: Phase aberration correction is essential in transcranial histotripsy to compensate for focal distortion caused by the heterogeneity of the intact skull bone. This paper improves the 2-step aberration correction (AC) method that has been previously presented and develops an AC workflow that fits in the clinical environment, in which the computed tomography (CT)-based analytical approach was first implemented, followed by a cavitation-based approach using the shockwaves from the acoustic cavitation emission (ACE).Approach:A 700 kHz, 360-element hemispherical transducer array capable of transmit-and-receive on all channels was used to transcranially generate histotripsy-induced cavitation and acquire ACE shockwaves. For CT-AC, two ray-tracing models were investigated: a forward ray-tracing model (transducer-to-focus) in the open-source software Kranion, and an in-house backward ray-tracing model (focus-to-transducer) accounting for refraction and the sound speed variation in skulls. Co-registration was achieved by aligning the skull CT data to the skull surface map reconstructed using the acoustic pulse-echo method. For ACE-AC, the ACE signals from the collapses of generated bubbles were aligned by cross-correlation to estimate the corresponding time delays.Main results:The performance of the 2-step method was tested with 3 excised human calvariums placed at 2 different locations in the transducer array. Results showed that the 2-step AC achieved 90 ± 7% peak focal pressure compared to the gold standard hydrophone correction. It also reduced the focal shift from 0.84 to 0.30 mm and the focal volume from 10.6 to 2.0 mm3on average compared to the no AC cases.Significance:The 2-step AC yielded better refocusing compared to either CT-AC or ACE-AC alone and can be implemented in real-time for transcranial histotripsy brain therapy.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Crânio , Acústica , Encéfalo , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Humanos , Crânio/diagnóstico por imagem , Som , Tomografia Computadorizada por Raios X/métodos
7.
JCI Insight ; 7(5)2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35050903

RESUMO

Symmetric, progressive, necrotizing lesions in the brainstem are a defining feature of Leigh syndrome (LS). A mechanistic understanding of the pathogenesis of these lesions has been elusive. Here, we report that leukocyte proliferation is causally involved in the pathogenesis of LS. Depleting leukocytes with a colony-stimulating factor 1 receptor inhibitor disrupted disease progression, including suppression of CNS lesion formation and a substantial extension of survival. Leukocyte depletion rescued diverse symptoms, including seizures, respiratory center function, hyperlactemia, and neurologic sequelae. These data reveal a mechanistic explanation for the beneficial effects of mTOR inhibition. More importantly, these findings dramatically alter our understanding of the pathogenesis of LS, demonstrating that immune involvement is causal in disease. This work has important implications for the mechanisms of mitochondrial disease and may lead to novel therapeutic strategies.


Assuntos
Doença de Leigh , Animais , Modelos Animais de Doenças , Complexo I de Transporte de Elétrons , Doença de Leigh/genética , Leucócitos/metabolismo , Camundongos , Camundongos Knockout
8.
Ultrasound Med Biol ; 48(1): 157-163, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34702638

RESUMO

The Focused Ultrasound Foundation has developed a low-cost, validated, open-source hydrophone scanner for the spatial characterization of ultrasound transducers. Assembly instructions and a MATLAB control graphical user interface are provided such that the device can be easily replicated for less than $1000 in roughly 40 person-hours. The low-cost scanning tank's performance was compared with data collected with a commercial automated scanning tank. Pressure measurements of a focused transducer and a planar transducer had less than a 10% difference between the two scanning systems. Two-dimensional automated scans (20 × 20 mm at 0.25-mm resolution) took the low-cost scanning tank 45 min compared with the commercial system's 30 min. A reproducibility study found that the low-cost scanner made consistent peak negative pressure measurements as reflected by the low coefficient of variation for both focused (1.88%) and planar (0.98%) transducers. The low-cost scanner described here is a viable alternative for ultrasound laboratories needing efficient, accurate characterization of ultrasound transducers.


Assuntos
Acústica , Ultrassom , Reprodutibilidade dos Testes , Transdutores
9.
Neurobiol Dis ; 163: 105594, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34933094

RESUMO

Genetic mitochondrial diseases are the most frequent cause of inherited metabolic disorders and one of the most prevalent causes of heritable neurological disease. Leigh syndrome is the most common clinical presentation of pediatric mitochondrial disease, typically appearing in the first few years of life, and involving severe multisystem pathologies. Clinical care for Leigh syndrome patients is difficult, complicated by the wide range of symptoms including characteristic progressive CNS lesion, metabolic sequelae, and epileptic seizures, which can be intractable to standard management. While no proven therapies yet exist for the underlying mitochondrial disease, a ketogenic diet has led to some reports of success in managing mitochondrial epilepsies, with ketosis reducing seizure risk and severity. The impact of ketosis on other aspects of disease progression in Leigh syndrome has not been studied, however, and a rigorous study of the impact of ketosis on seizures in mitochondrial disease is lacking. Conversely, preclinical efforts have identified the intracellular nutrient signaling regulator mTOR as a promising therapeutic target, with data suggesting the benefits are mediated by metabolic changes. mTOR inhibition alleviates epilepsies arising from defects in TSC, an mTOR regulator, but the therapeutic potential of mTOR inhibition in seizures related to primary mitochondrial dysfunction is unknown. Given that ketogenic diet is used clinically in the setting of mitochondrial disease, and mTOR inhibition is in clinical trials for intractable pediatric epilepsies of diverse causal origins, a direct experimental assessment of their effects is imperative. Here, we define the impact of dietary ketosis on survival and CNS disease in the Ndufs4(KO) mouse model of Leigh syndrome and the therapeutic potential of both dietary ketosis and mTOR inhibition on seizures in this model. These data provide timely insight into two important clinical interventions.


Assuntos
Dieta Cetogênica , Doença de Leigh/terapia , Sirolimo/uso terapêutico , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Modelos Animais de Doenças , Complexo I de Transporte de Elétrons/genética , Doença de Leigh/dietoterapia , Doença de Leigh/tratamento farmacológico , Doença de Leigh/genética , Camundongos , Camundongos Knockout , Sirolimo/farmacologia , Resultado do Tratamento
10.
Ultrasound Med Biol ; 48(1): 98-110, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34615611

RESUMO

Histotripsy has been previously applied to target various cranial locations in vitro through an excised human skull. Recently, a transcranial magnetic resonance (MR)-guided histotripsy (tcMRgHt) system was developed, enabling pre-clinical investigations of tcMRgHt for brain surgery. To determine the feasibility of in vivo transcranial histotripsy, tcMRgHt treatment was delivered to eight pigs using a 700-kHz, 128-element, MR-compatible phased-array transducer inside a 3-T magnetic resonance imaging (MRI) scanner. After craniotomy to open an acoustic window to the brain, histotripsy was applied through an excised human calvarium to target the inside of the pig brain based on pre-treatment MRI and fiducial markers. MR images were acquired pre-treatment, immediately post-treatment and 2-4 h post-treatment to evaluate the acute treatment outcome. Successful histotripsy ablation was observed in all pigs. The MR-evident lesions were well confined within the targeted volume, without evidence of excessive brain edema or hemorrhage outside of the target zone. Histology revealed tissue homogenization in the ablation zones with a sharp demarcation between destroyed and unaffected tissue, which correlated well with the radiographic treatment zones on MRI. These results are the first to support the in vivo feasibility of tcMRgHt in the pig brain, enabling further investigation of the use of tcMRgHt for brain surgery.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Imageamento por Ressonância Magnética , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia , Espectroscopia de Ressonância Magnética , Crânio , Suínos , Transdutores
11.
Elife ; 102021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34254587

RESUMO

Volatile anesthetics (VAs) are widely used in medicine, but the mechanisms underlying their effects remain ill-defined. Though routine anesthesia is safe in healthy individuals, instances of sensitivity are well documented, and there has been significant concern regarding the impact of VAs on neonatal brain development. Evidence indicates that VAs have multiple targets, with anesthetic and non-anesthetic effects mediated by neuroreceptors, ion channels, and the mitochondrial electron transport chain. Here, we characterize an unexpected metabolic effect of VAs in neonatal mice. Neonatal blood ß-hydroxybutarate (ß-HB) is rapidly depleted by VAs at concentrations well below those necessary for anesthesia. ß-HB in adults, including animals in dietary ketosis, is unaffected. Depletion of ß-HB is mediated by citrate accumulation, malonyl-CoA production by acetyl-CoA carboxylase, and inhibition of fatty acid oxidation. Adults show similar significant changes to citrate and malonyl-CoA, but are insensitive to malonyl-CoA, displaying reduced metabolic flexibility compared to younger animals.


Assuntos
Anestésicos/metabolismo , Anestésicos/farmacologia , Ácido 3-Hidroxibutírico , Acetil-CoA Carboxilase/metabolismo , Animais , Citratos/metabolismo , Ácido Cítrico/metabolismo , Ácidos Graxos/metabolismo , Feminino , Glucose/metabolismo , Hipoglicemia , Isoflurano/metabolismo , Cetose , Masculino , Malonil Coenzima A/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias , Oxirredução
12.
Neurosurgery ; 89(4): 610-616, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34245158

RESUMO

BACKGROUND: During focused ultrasound ablation (FUSA), the presumed stereotactic target is tested with subthreshold sonications before permanent ablation. This testing relies on ultrasound-induced reversible clinical effects (thermal neuromodulation, TN). However, the thermal dose and spot size thresholds to induce TN are not yet defined. OBJECTIVE: To define the thermal dose and spot size thresholds associated with TN. METHODS: We performed a retrospective analysis of intraoperative FUSA data of essential tremor patients. Sonications with a thermal dose of less than 25 cumulative equivalent minutes (CEM) were classified as subthreshold. The intraoperative writing samples were independently rated by 2 raters using the clinical rating scale for tremor. The association between thermal dose and tremor scores was statistically analyzed, and the thermal dose and spot size thresholds for TN were computed using leave-one-out cross-validation analysis. RESULTS: A total of 331 pairs of sonications and writing samples were analyzed; 97 were classified as subthreshold sonications. TN was observed in 23 (24%) subthreshold sonications. The median tremor improvement during TN was 20% (interquartile range = 41.6). The thermal dose threshold for TN was 0.67 CEM (equivalent to 30 s thermal exposure at 43°C). The spot size threshold for TN was 2.46 mm. Ventral intermediate medial nucleus was exposed to TN thermal dose during subablative and ablative sonications. CONCLUSION: The TN thermal dose and spot size thresholds are significantly higher than the current FUSA standard of care. We recommend long duration (>30 s), subthreshold sonications for intraoperative testing during FUSA. Future investigations should test whether the thermal dose threshold is tissue-specific and determine the mechanisms underlying focused ultrasound TN.


Assuntos
Tremor Essencial , Cirurgia Assistida por Computador , Tremor Essencial/terapia , Humanos , Imageamento por Ressonância Magnética , Estudos Retrospectivos , Ultrassonografia
13.
Sci Rep ; 11(1): 6532, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33753771

RESUMO

The InSightec Exablate system is the standard of care used for transcranial focused ultrasound ablation treatments in the United States. The system calculates phase corrections that account for aberrations caused by the human skull. This work investigates whether skull aberration correction can be improved by comparing the standard of care InSightec ray tracing method with the hybrid angular spectrum (HAS) method and the gold standard hydrophone method. Three degassed ex vivo human skulls were sonicated with a 670 kHz hemispherical phased array transducer (InSightec Exablate 4000). Phase corrections were calculated using four different methods (straight ray tracing, InSightec ray tracing, HAS, and hydrophone) and were used to drive the transducer. 3D raster scans of the beam profiles were acquired using a hydrophone mounted on a 3-axis positioner system. Focal spots were evaluated using six metrics: pressure at the target, peak pressure, intensity at the target, peak intensity, positioning error, and focal spot volume. For three skulls, the InSightec ray tracing method achieved 52 ± 21% normalized target intensity (normalized to hydrophone), 76 ± 17% normalized peak intensity, and 0.72 ± 0.47 mm positioning error. The HAS method achieved 74 ± 9% normalized target intensity, 81 ± 9% normalized peak intensity, and 0.35 ± 0.09 mm positioning error. The InSightec-to-HAS improvement in focal spot targeting provides promise in improving treatment outcomes. These improvements to skull aberration correction are also highly relevant for the applications of focused ultrasound neuromodulation and blood brain barrier opening, which are currently being translated for human use.


Assuntos
Encéfalo/diagnóstico por imagem , Ablação por Ultrassom Focalizado de Alta Intensidade , Crânio/diagnóstico por imagem , Encéfalo/fisiologia , Humanos , Crânio/fisiologia , Tomografia Computadorizada por Raios X
14.
Artigo em Inglês | MEDLINE | ID: mdl-33166253

RESUMO

Transcranial high-intensity focused ultrasound is used in clinics for treating essential tremor (ET) and proposed for many other brain disorders. This promising treatment modality requires high energy resulting eventually in undesired cavitation and potential side effects. The goals of the present work were: 1) to evaluate the potential increase of the cavitation threshold using pseudorandom gated sonications and 2) to assess the heating capabilities with such sonications. The experiments were performed with the transcranial magnetic resonance (MR)-compatible ExAblate Neuro system (InSightec, Haifa, Israel) operating at a frequency of 670 kHz, either in continuous wave (CW) or with pseudorandom gated sonications of 50% duty cycle. Cavitation activity with the two types of sonications was compared using chemical dosimetry of hydroxyl radical production at the focus of the transducer, after propagation in water or through a human skull. Heating trials were performed in a hydrogel tissue-mimicking material embedded in a human skull to mimic a clinical situation. The temperature was measured by MR-thermometry when focusing at the geometrical focus and steering off focus up to 15 mm. Compared with CW sonications, the use of gated sonication did not affect the efficiency (60%) nor the steering abilities of the transducer. After propagation through a human skull, gated sonication required a higher pressure level (10 MPa) to initiate cavitation as compared with CW (5.8 MPa). Moreover, at equivalent acoustic power above the cavitation threshold, the level of cavitation activity initiated with gated sonications was much lower with gated sonication than with continuous sonications, almost half after propagation through water and one-third after propagation through a skull. This lowered cavitation activity may be attributed to a breaking of the dynamic of the bubbles moving from monochromatic to more broadband sonications and to the removal of residual cavitation nuclei between pulses with gated sonications. The heating capability was not affected by the gated sonications, and similar temperature increases were reached at focus with both types of sonications when sonicating at equivalent acoustic power, both in water or after propagation through a human skull (+15 °C at 325 W for 10 s). These data, acquired with a clinical system, suggest that gated sonication could be an alternative to continuous sonications when cavitation onset is an issue.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Neurocirurgia , Humanos , Imageamento por Ressonância Magnética , Procedimentos Neurocirúrgicos , Crânio , Sonicação
15.
J Neurosurg ; 135(1): 291-299, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32977311

RESUMO

OBJECTIVE: Magnetic resonance imaging-guided focused ultrasound (MRgFUS) is an emerging treatment modality that enables incisionless ablative neurosurgical procedures. Bilateral MRgFUS capsulotomy has recently been demonstrated to be safe and effective in treating obsessive-compulsive disorder (OCD) and major depressive disorder (MDD). Preliminary evidence has suggested that bilateral MRgFUS capsulotomy can present increased difficulties in reaching lesional temperatures as compared to unilateral thalamotomy. The authors of this article aimed to study the parameters associated with successful MRgFUS capsulotomy lesioning and to present longitudinal radiographic findings following MRgFUS capsulotomy. METHODS: Using data from 22 attempted MRgFUS capsulotomy treatments, the authors investigated the relationship between various sonication parameters and the maximal temperature achieved at the intracranial target. Lesion volume and morphology were analyzed longitudinally using structural and diffusion tensor imaging. A retreatment procedure was attempted in one patient, and their postoperative imaging is presented. RESULTS: Skull density ratio (SDR), skull thickness, and angle of incidence were significantly correlated with the maximal temperature achieved. MRgFUS capsulotomy lesions appeared similar to those following MRgFUS thalamotomy, with three concentric zones observed on MRI. Lesion volumes regressed substantially over time following MRgFUS. Fractional anisotropy analysis revealed a disruption in white matter integrity, followed by a gradual return to near-baseline levels concurrent with lesion regression. In the patient who underwent retreatment, successful bilateral lesioning was achieved, and there were no adverse clinical or radiographic events. CONCLUSIONS: With the current iteration of MRgFUS technology, skull-related parameters such as SDR, skull thickness, and angle of incidence should be considered when selecting patients suitable for MRgFUS capsulotomy. Lesions appear to follow morphological patterns similar to what is seen following MRgFUS thalamotomy. Retreatment appears to be safe, although additional cases will be necessary to further evaluate the associated safety profile.

16.
BMC Biomed Eng ; 2: 9, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32903384

RESUMO

BACKGROUND: The phase correction on transcranial focused ultrasound is essential to regulate unwanted focal point shift caused by skull bone aberration. The aim of the current study was to design and investigate the feasibility of a ray-based phase correction toolkit for transcranial focused ultrasound. RESULTS: The peak pressure at focal area was improved by 140.5 ± 7.0% on target I and 134.8 ± 19.1% on target II using proposed phase correction toolkit, respectively. A total computation time of 402.1 ± 24.5 milliseconds was achieved for each sonication. CONCLUSION: The designed ray-based phase correction software can be used as a lightweight toolkit to compensate aberrated phase within clinical environment.

17.
J Neurosurg ; 132(4): 1249-1255, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30835689

RESUMO

Transcranial focused ultrasound (FUS) ablation is an emerging incision-less treatment for neurological disorders. The factors affecting FUS treatment efficiency are not well understood. Kranion is open-source software that allows the user to simulate the planning stages of FUS treatment and to "replay" previous treatments for off-line analysis. This study aimed to investigate the relationship between skull parameters and treatment efficiency and to create a metric to estimate temperature rise during FUS. CT images from 28 patients were analyzed to validate the use of Kranion. For stereotactic targets within each patient, individual transducer element incident angles, skull density ratio, and skull thickness measurements were recorded. A penetration metric (the "beam index") was calculated by combining the energy loss from incident angles and the skull thickness. Kranion accurately estimated the patient's skull and treatment parameters. The authors observed significant changes in incident angles with different targets in the brain. Using the beam index as a predictor of temperature rise in a linear-mixed-effects model, they were able to predict the average temperature rise at the focal point during ablation with < 21% error (55°C ± 3.8°C) in 75% of sonications, and with < 44% (55°C ± 7.9°C) in 97% of sonications. This research suggests that the beam index can improve the prediction of temperature rise during FUS. Additional work is required to study the relationship between temperature rise and lesion shape and clinical outcomes.

18.
J Neurosurg ; : 1-8, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30485186

RESUMO

OBJECTIVE: Histotripsy is an ultrasound-based treatment modality relying on the generation of targeted cavitation bubble clouds, which mechanically fractionate tissue. The purpose of the current study was to investigate the in vivo feasibility, including dosage requirements and safety, of generating well-confined destructive lesions within the porcine brain utilizing histotripsy technology. METHODS: Following a craniectomy to open an acoustic window to the brain, histotripsy pulses were delivered to generate lesions in the porcine cortex. Large lesions with a major dimension of up to 1 cm were generated to demonstrate the efficacy of histotripsy lesioning in the brain. Gyrus-confined lesions were generated at different applied dosages and under ultrasound imaging guidance to ensure that they were accurately targeted and contained within individual gyri. Clinical evaluation as well as MRI and histological outcomes were assessed in the acute (≤ 6 hours) and subacute (≤ 72 hours) phases of recovery. RESULTS: Histotripsy was able to generate lesions with a major dimension of up to 1 cm in the cortex. Histotripsy lesions were seen to be well demarcated with sharp boundaries between treated and untreated tissues, with histological evidence of injuries extending ≤ 200 µm from their boundaries in all cases. In animals with lesions confined to the gyrus, no major hemorrhage or other complications resulting from treatment were observed. At 72 hours, MRI revealed minimal to no edema and no radiographic evidence of inflammatory changes in the perilesional area. Histological evaluation revealed the histotripsy lesions to be similar to subacute infarcts. CONCLUSIONS: Histotripsy can be used to generate sharply defined lesions of arbitrary shapes and sizes in the swine cortex. Lesions confined to within the gyri did not lead to significant hemorrhage or edema responses at the treatment site in the acute or subacute time intervals.

20.
J Neurosurg ; 125(6): 1557-1564, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-26871207

RESUMO

OBJECTIVE In appropriate candidates, the treatment of medication-refractory mesial temporal lobe epilepsy (MTLE) is primarily surgical. Traditional anterior temporal lobectomy yields seizure-free rates of 60%-70% and possibly higher. The field of magnetic resonance-guided focused ultrasound (MRgFUS) is an evolving field in neurosurgery. There is potential to treat MTLE with MRgFUS; however, it has appeared that the temporal lobe structures were beyond the existing treatment envelope of currently available clinical systems. The purpose of this study was to determine whether lesional temperatures can be achieved in the target tissue and to assess potential safety concerns. METHODS Cadaveric skulls with tissue-mimicking gels were used as phantom targets. An ablative volume was then mapped out for a "virtual temporal lobectomy." These data were then used to create a target volume on the InSightec ExAblate Neuro system. The target was the amygdala, uncus, anterior 20 mm of hippocampus, and adjacent parahippocampal gyrus. This volume was approximately 5cm3. Thermocouples were placed on critical skull base structures to monitor skull base heating. RESULTS Adequate focusing of the ultrasound energy was possible in the temporal lobe structures. Using clinically relevant ultrasound parameters (power 900 W, duration 10 sec, frequency 650 kHz), ablative temperatures were not achieved (maximum temperature 46.1°C). Increasing sonication duration to 30 sec demonstrated lesional temperatures in the mesial temporal lobe structures of interest (up to 60.5°C). Heating of the skull base of up to 24.7°C occurred with 30-sec sonications. CONCLUSIONS MRgFUS thermal ablation of the mesial temporal lobe structures relevant in temporal lobe epilepsy is feasible in a laboratory model. Longer sonications were required to achieve temperatures that would create permanent lesions in brain tissue. Heating of the skull base occurred with longer sonications. Blocking algorithms would be required to restrict ultrasound beams causing skull base heating. In the future, MRgFUS may present a minimally invasive, non-ionizing treatment of MTLE.


Assuntos
Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/cirurgia , Imageamento por Ressonância Magnética , Procedimentos Neurocirúrgicos/métodos , Cirurgia Assistida por Computador , Ultrassonografia de Intervenção , Cadáver , Estudos de Viabilidade , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...